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There is a growing interest in scientific literature on identifying how
and to what extent interventions applied to a specific body region
influence the responses and functions of other seemingly unrelated
body regions. To investigate such a construct, it is necessary to have
a global multivariate model that considers the interaction among
several variables that are involved in a specific task and how a local
and acute impairment affects the behavior of the output of such a
model. We developed an artificial neural network (ANN)-based mul-
tivariate model by using parameters of motor skills obtained from
kinematic, postural control, joint torque, and proprioception vari-
ables to assess the local fatigue effects of the abductor hip muscles
on the functional profile during a single-leg drop landing and a
squatting task. Findings suggest that hip abductor muscles’ local
fatigue produces a significant effect on a general functional profile,
built on different control systems. We propose that expanded and
global approaches, such as the one used in this study, have great
applicability and have the potential to serve as a tool that guaran-
tees ecological validity of future investigations.
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By definition, muscle fatigue is the experience of the maximal
force and power impairment (1). Interestingly, there is evi-

dence that the duration of some sustained tasks is not limited by
fatigue of the principal muscles (2). Since most daily-living ac-
tivities involve submaximal force capacity using synergistic
muscle groups, the onset of local fatigue may not reduce the
ability to perform a given specific task (for example, either to
support body weight during landing or to keep the body in a
target position as still as possible). Furthermore, reduction in
performance or failure in a task may not necessarily be caused by
the main responsible muscle fatigue.
There is a growing body of literature showing that interventions

applied to a specific anatomical region could influence an outcome
and function of other, seemingly unrelated body regions (3–9). This
phenomenon is called as regional interdependence (RI) and is
defined as a concept that impairments seemingly unrelated in re-
mote anatomical regions could be associated with a patient’s pri-
mary condition (3). The RI model represents the musculoskeletal
response of an interdependent process by which other systems may
be entangled in evoking musculoskeletal changes. This involves an
integrated and coordinated activation of multiple body systems
(i.e., musculoskeletal, biopsychosocial, neurophysiological, etc.)
(10). For example, localized muscle fatigue impairs movement
coordination, proprioception, and muscle-reaction time (11, 12),
which are imperative for postural balance maintenance (13, 14).
Several studies have shown the isolated effects of hip-

abductor fatigue on postural control (15); torque distribution
and dynamics of the lower limb joints (16); sense of joint po-
sition (17); and motor capacities involved in the drop-landing
task (18). However, these analyses are fragmented and do not
access the interdependence among the parameters affected by
the hip-abductor muscles’ local fatigue. Thereby, analyses made

so far do not allow understanding of the effect of local fatigue
in a general functional profile of the subject.
To investigate this construct, a global multivariate model is

necessary, which considers the interaction of several variables in-
volved in a motor task and how the hip-abduction force decrease,
induced by muscle fatigue, affects the model output behavior.
From the 20th century up to nowadays, the inferences in bio-

medical research were mainly based on the use of traditional sta-
tistical procedures to test a hypothesis. The current surge of data
and demands on more global analysis present new challenges and
opportunities that are shifting data-analysis paradigms in many
biomedical disciplines, including human-movement biomechanics.
Data from human-movement experiments are heterogeneous,
high-dimensional, and growing in volume, which make them not
fitting to assumptions from traditional statistics. Advanced analyt-
ical techniques to assess informative features from these data and
model underlying relationships that cannot be modeled with tra-
ditional statistical tools could increase the biomechanical research
quality, as it has occurred in other areas of knowledge (i.e., speech
recognition, disease detection, etc.) (19–22).
Artificial intelligence tools, more specifically the artificial

neural networks (ANNs), have been widely used in science in
general, including the human-movement sciences (23), in order
to generate a more global understanding of multivariate phe-
nomena. Indeed, such structures are able to access the linear and
nonlinear relationships that possibly exist among the variables
that construct the phenomenon, as well as to discover different
patterns that allow identifying subpopulations that exhibit dif-
ferent types of behavior.
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Our aim was to develop an ANN-based multivariate model
using representative parameters of motor skills obtained from
kinematic, postural control, joint torque, and proprioception
variables to assess the local fatigue effects of the abductor hip
muscles on the general functional profile in a single-leg drop
landing and a squatting task.

Results
Behavior of the Variables Used to Compose the Model. Part of our
results are expressed as the multiplication factor (MF) value of
each condition that is multiplied by the constant value (as mean)
of each variable. MF value represents the proportion of the
amplitudes of the variables when obtained in the different con-
ditions of the experiment. In the present study, the conditions
investigated are prefatigue, during fatigue, and 20 min after the
fatigue of the hip abductor muscles. Moreover, due to the large
number of variables investigated (16 obtained during the un-
stable phase of the drop-landing task and 15 for the other in-
vestigated tasks), the graphs showing the MF values allow us to
observe regional interdependence, since the MF values for ki-
netic and kinematic variables are plotted on the same graph. In
Fig. 1, the behavior variables MF values obtained during the
unstable phase of the squatting task can be visualized. The most
visible changes occurred in the data obtained 20 min after the
fatigue protocol, and they were observed in hip, knee, and ankle
torque, showing increasing values. Squatting time and hip tilt
showed similar results.
For the stable phase (Fig. 2) of the squatting task, it was

possible to notice changes in variables related to postural con-
trol, such as the center of pressure (CoP) area, total CoP dis-
placement, and CoP mean velocity. Visual differences of the MF
values also occurred in the sense of position, where fatigue
seemed to decrease absolute and variable errors.
Kinematic and kinetic variables obtained during the unstable

and stable phases of the drop-landing task are shown, respec-
tively, in Figs. 3 and 4. During the unstable phase, in the fatigue
condition, the medio-lateral ground-reaction force, CoP area,
CoP total displacement, and inverse dynamics of the ankle in the
z and y axes presented MF values of 10 to 40% higher than those
obtained in prefatigue conditions and 20 min after fatigue.
In the stable phase of the landing task (Fig. 4), the variables

related to proprioception (variable and absolute error) presented
increasing MF values (between 5% and 20%) in the order

prefatigue, during fatigue, and 20 min after fatigue. The values
obtained from inverse dynamics of the hip joint (in the x axis)
presented higher MF values in the prefatigue condition, when
compared to the other two conditions. The CoP total displace-
ment and the area were greater in the condition 20 min after fa-
tigue, followed by the condition fatigue and then prefatigue. The
hip tilt also showed different MF values (between 10% and 40%)
increasing in the following sequence: prefatigue, 20 min after fa-
tigue, and during fatigue.

Classification Generated by ANN Structure. The results of the gen-
eral functional profile classification of each subject in each
condition are represented in Table 1 and are presented in two
possible outcomes: changed (1) or unchanged (0).
To compare the ANN results of the binary categorical variable

among the conditions prefatigue, fatigue, and 20 min postfatigue
(24), the Cochran’s Q test was applied. Next, the McNemar test
was conducted to compare between pairs. Briefly, the effect sizes
for both tests was calculated as previously suggested and classi-
fied as no effect (0 to 0.1), small effect (0.2 to 0.4), intermediate
effect (0.5 to 0.7), and large effect (0.8 to ≥ 1) (25–27). For both
tests, a significance level of P < 0.05 was accepted.
The results of the Cochran’s Q test showed that there is a

significant difference in the behavior of the general functional
profile between the three conditions (P < 0.001; effect size =
0.20), and the McNemar test showed that the differences are
between prefatigue and fatigue conditions (P = 0.002; effect
size = 0.09), as well as between fatigue and postfatigue 20 min
conditions (P = 0.016; effect size = 0.09). No difference was
found between prefatigue and postfatigue 20 min (P = 0.250;
effect size = 0.09).

Discussion
Considering that the human body is built based on interdependent
systems, which include the sensorimotor system, motor-control
impairments, even if acute and local, can generate deleterious
consequences in the motor control of distant regions, possibly
bringing harmful consequences for other segments and parts of
the body-motor tasks. Such interdependence has been named the
RI model (10). Moreover, pathological conditions start series of
responses involving multiple body systems, not only at the mus-
culoskeletal, but also at the neurophysiological, somatovisceral,
and biopsychosocial levels (28, 29).

Fig. 1. MF for kinetic and kinematic variables obtained during the unstable phase of the squatting task. ID, inverse dynamics. For hip, knee, and ankle, X, Y,
and Z mean adduction/abduction, extension/flexion, and rotation, respectively.
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As the concept of regional interdependence still consists of
theory, for it to be validated experimentally it is necessary to
demonstrate that the imbalance of one part of the body directly
or indirectly influences other parts that are not directly related to
it (9, 30–34). Our results, based on acute and local muscle fa-
tigue, point to the existence of interdependence among the ar-
ticulated segments of the pelvis and the lower-limb segments. We
have shown that in a unipodal landing and in a task of bringing a
joint (not directly involved with the fatigued muscles) to a target
position, muscle fatigue of the abductor muscles of the hip af-
fects variables related to strength and proprioception, not only at
the hip, but also in other segments of the lower limb.
Interdependence between left and right hip joints in postural

control has already been shown (15). Specifically, it was found
that unipodal postural control is altered either by fatigue of the
hip abductor muscles on the support side or in the abductor
muscles of the contralateral hip, suggesting that, in addition to
local muscle fatigue, changes in the central nervous system might
have taken place.
In a very interesting study with an ecological appeal for athletes

(16), volunteers were asked to jump off a platform, perform uni-
podal landing, and then perform either a side-step cut, a straight
vertical jump, or continue to run from that point. The results
showed that, regardless of the maneuver, due to hip-abductor
fatigue, during the weight acceptance of the stance phase, the
knee angle at initial ground contact was more adducted, the knee
underwent greater range of motion (RoM) into abduction, and
there was a greater internal knee adductor moment.
Fatigue of hip-abductor muscles has also been related to

changes in proprioception. There is a study reporting that the
hip-position sense was significantly affected by fatigue, as indi-
cated by an increased relative error of 0.78, in the joint-position
sense, toward abduction (17). Changes in the joint positioning
(during single-leg landing) of the lower limb due to fatigue of the
hip abductors was also shown (18). According to Patrek et al.
(18), fatiguing processes may affect negatively the hip-abduction
and knee-abduction angle. The authors also observed that the
peak of external knee adduction was decreased around 27%,
while the peak of hip-adduction moment was decreased around
24% in the postfatigue landing trial.
In contrast with the finding of Arvin et al. (17), our results

showed that the position sense, represented by absolute and

variable error, presents smaller error values during the fatigue
condition. The difference between our findings and those of the
authors cited above may be because we measured the position
sense of a joint not directly involved with local fatigue, unlike
what was done by Arvin et al. (17), who measured the position
sense of the hip, which was the joint directly involved with the
fatigue of the hip abductors.
Moreover, it is important to emphasize that the alterations

found are interrelated. For example, when observing a decrease in
the capacities of postural control, it is common to observe an in-
crease in the articular moments in the lower limb. Furthermore,
an increase in the hip tilt certainly changes the abilities of postural
control. In the same way, we can infer that a joint exposed to
greater internal torques has its sense of position affected.
By observing the interdependence between all of the systems

investigated in the present study, it is possible to identify that all
changes observed lead to a significant alteration (P < 0.001) of
the general functional profile constructed by the ANN structure.
It is possible to observe that, due to the application of the fatigue
protocol, 76.9% of the subjects suffered a significant change in
their general functional profile in relation to the prefatigue
condition (P = 0.002) and that 70% of them had a significant
recovery after 20 min (P = 0.016). Furthermore, it was observed
that the state after the 20-min recovery period did not present a
significant difference from the prefatigue condition (P = 0.250).
Researchers suggest that this expanded and global approach

produces more ecological understanding and result in positive
findings, especially when it comes to understanding and treating
mechanisms of injury or illness. Trials that uses a multimodal
analysis approach sustained by RI concepts, for instance, have
shown to be effective (5, 35–37).
In conclusion, our findings pointed out that local fatigue of the

hip-abductor muscles produces a significant effect on a general
functional profile, built on different control systems, and that this
effect may change between the different systems. It also can be
applicable for most of the volunteers of the present study. Fi-
nally, we suggest that expanded and global approaches such as
the one used in this study have great applicability and have the
potential to serve as a tool that guarantees ecological validity of
future investigations.

Fig. 2. MF for kinetic and kinematic variables obtained during the stable phase of the squatting task. ID, inverse dynamics. For hip, knee, and ankle, X, Y, and
Z mean adduction/abduction, extension/flexion, and rotation, respectively.
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Materials and Methods
Sample. Thirteen sedentary women (38) (21.1 ± 2.1 y of age, 1.60 ± 0.06 m in
height, and 56.5 ± 14.5 kg in body mass) voluntarily took part in this study.
Exclusion criteria consisted of pain or surgery in the lower limbs, inability to
remain on unipodal support during the execution of the proposed tasks,
recent injuries, decompensated hypertension, or heart problems. This study
was approved by the ethics committee of São Judas Tadeu University (reg-
istry n.93/11), and the procedures were carried out in accordance with the
Declaration of Helsinki. After receiving all information about the data-
collection protocols so that they could participate in the study, all partici-
pants gave their duly signed informed consent forms.

Experimental Protocol.
Familiarization with the target knee angle. During the training phase, subjects
performed unipodal squatting movements with a break at the end to have
visual feedback on a computer screen. Subjects had to fit knee, trochanter,
and ankle over three fixed points displayed on the screen, imposing posi-
tioning the knee joint at a 35° of flexion (considering total extension equal to
0°). Further, verbal feedback was given to the subjects in a nominal order as
“correct” or “incorrect” joint positioning. The memorization was trained by
keeping the knee in the target position for 5 s. To conclude the training

phase, the volunteer was considered to be familiar when able to locate the
target angle three consecutive times. During the whole experimental pro-
tocol, subjects performed the tasks with their dominant limb to ensure
control regarding postural control and sense of position.
Fatigue protocol. The fatigue-inducing protocol consisted of performing hip
abduction (concentric) and adduction (eccentric) movements at a frequency
of 1 Hz, marked by a metronome, from the lateral decubitus position,
resisted with a mass equivalent to 5% body weight attached to the ankle.
Volunteers were instructed to perform as many movements as possible and
received constant standardized verbal encouragement. Briefly, the encour-
agements were standardized for all subjects, as the same investigator per-
formed it by using standardized words during the whole test. The test of all
volunteers was managed by the same evaluator. When the volunteer failed
to repeat the movements, the maximal voluntary isometric contraction of
hip abduction was immediately tested by using an isokinetic dynamometer,
Biodex System 4, in order to verify if there was a decrease of at least 50% in
torque peak (39, 40). Once fatigue was observed, the volunteer was
instructed to perform the tasks of squatting or drop landing, with no rele-
vant resting period. The task-execution order was randomized. After the
first task was performed, the volunteer returned to the fatigue protocol

Fig. 4. MF for kinetic and kinematic variables obtained during the stable phase of the drop-landing task. ID, inverse dynamics. For hip, knee, and ankle, X, Y,
and Z mean adduction/abduction, extension/flexion, and rotation, respectively.

Fig. 3. MF for kinetic and kinematic variables obtained during the unstable phase of the drop-landing task. ID, inverse dynamics. For hip, knee, and ankle, X,
Y, and Z mean adduction/abduction, extension/flexion, and rotation, respectively.

Goethel et al. PNAS | August 18, 2020 | vol. 117 | no. 33 | 19869

A
PP

LI
ED

BI
O
LO

G
IC
A
L

SC
IE
N
CE

S

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
13

, 2
02

1 



www.manaraa.com

until the fatigue condition was checked again, so that the second task was
carried out.
Squatting task. Immediately after performing three unipodal squat move-
ments, the volunteer was instructed to position the knee joint at the pre-
determined target angle and thus remain (as still as possible) for 3 s. This
procedure was performed under three conditions—namely, before the ap-
plication of the fatigue protocol (prefatigue), immediately after the induc-
tion of fatigue (fatigue), and 20 min after fatigue protocol (postfatigue
20 min).
Drop-landing task. Volunteers were instructed to remain in unipodal support
on a platform 30 cmhigh. As soon as authorized, they leaped forward in order
to land on unipodal support over a force platform placed immediately in
front of the support platform. They were instructed to position the knee joint
in the predetermined target position immediately after landing and remain
as still as possible for 3 s. This procedure was repeated three times in each of
the following conditions: prefatigue, fatigue, and 20 min postfatigue.
Data collection and processing. In order to acquire kinematic data during the
squatting and drop-landing tasks at a frame rate of 250 frames per second,
seven T10 (Vicon) cameras were used. For the motion reconstruction, basic
reflective markers (Vicon) were fixed bilaterally according to the PluginGait
model for the whole body (Vicon). The volunteers performed the squatting
and the drop-landing tasks on an AMTI model OR6-2000 force platform,
allowing us to acquire the kinetic data of ground reaction (sampling fre-
quency = 1,500 Hz). Kinematic and kinetic data were acquired synchronously
by the Vicon Nexus software (Vicon).

The optimal cutoff frequency for signal filtering was found by using the
residual analysis (41), wherein the signal of the kinematic data was filtered
with a recursive fourth-order low-pass Butterworth filter with the cutoff
frequency of 6 Hz and the kinetic data with a recursive fourth-order low-
pass Butterworth filter with the cutoff frequency of 95 Hz.

All data were processed and analyzed through specific routines developed
in Matlab (Version 8.5.0.197613; MathWorks, Inc.).

Data Analysis.
Unstable and stable phase of the tasks. Initially, based on the angulation of knee
flexion, the signals were divided into two phases: unstable phase and stable
phase. The unstable phase comprised the time between the beginning of the
task and the beginning of the stable phase. The stable phase, however, was
defined as the 1-s time period which presented the lesser variation of the
angular position within the time period of 3 s in which the volunteer tried to
remain with the knee flexed in the target angular position. The beginning of
the stable phase was determined by using the approximated generalized
likelihood ratio (AGLR) method.

AGLR (42–44) is based on statistical testing of the null hypotheses H0 and
the alternate hypothesis H1 describing the statistical properties of series of
knee flexion angle samples x1, x2, . . ., xk. H0 indicates no change within the
analyzed time window of the knee flexion angle signal, and H1 indicates
that change has occurred in the tested time window of the signal. Two
hypotheses were tested by using a log-likelihood ratio test g(n):

g(n) = ln( ∏
k

n=1
p1(xn)|H1

p0(xn)|H0
)><h, [1]

where ln represents natural logarithm, x(n) represents series of knee flexion
angle samples, and p1 and p0 represent probability density functions

associated with hypotheses H1 and H0, respectively. When log-likelihood g(n)
is higher than preset threshold “h,” then the hypothesis H1 is accepted,
meaning that signal change is detected. The AGLR algorithm performs hy-
pothesis testing in a sliding window of size L, over the series of knee flexion
angle data. The log-likelihood ratio is calculated from L samples for every
window epoch. The signal stability is detected (smaller g(n)) when the hy-
pothesis H0 is considered valid, which means that no signal change is de-
tected, allowing us to estimate the onset of the stable phase, with a
duration of 1 s, found by maximizing likelihood estimators for each sample
from the last window position. For the AGLR algorithm, the window size was
set at L = 0.032 s (eight samples), and the detection threshold was set at h =
14 (45).

Variables Definition.
Knee RoM. During the squatting and drop-landing tasks, the knee RoM was
calculated as the difference between the highest and the lowest knee
flexion angle value obtained during the unstable phase.
Squatting time. Squatting time consisted of the time period between the
beginning of the squatting task and the beginning of the stable phase.
Absolute error. The absolute error (AE) is the error measure of the position
sense based on the target angulation and was calculated during the stable
phase by using the following equation:

AE =
∑n
i=1

|xi − A|
n

, [2]

where xi indicates the knee flexion angle in the i sample; A indicates the
target knee flexion angle; and n refers to the number of samples.
Variable error. The variable error (VE) is the error measure of the position
sense based on the variability of the maintained angle and was calculated
during the stable phase by using the following equation:

VE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1

(xi − x)2

n

√√√√
, [3]

where xi indicates the knee flexion angle of the volunteer in the i sample; x
indicates the average of the angular positions maintained during the stable
phase; and n refers to the number of samples.
Hip tilt. Hip tilt (HT) consists of the leveling of the anterior superior iliac
spines, calculated by using the following equation:

HTi = tan−1(LasiZi − RasiZi
LasiYi − RasiYi

), [4]

where LasiZ means the position of the left antero-superior iliac spine on the
vertical axis in the i sample; RasiZ means the position of the right antero-
superior iliac spine on the vertical axis in the i sample; LasiY means the
position of the left antero-superior iliac spine on the medio-lateral axis in
the i sample; and RasiY means the position of the right antero-superior iliac
spine on the medio-lateral axis in the i sample.

The difference between the maximum and the minimum value was cal-
culated in both phases of both tasks.
Ground reaction forces and CoP. From the kinetic data acquired using the force
platform, ground reaction force (GRF) on the medio-lateral and vertical axes
during the unstable phase of the drop-landing task were analyzed.

The CoP was calculated for the antero-posterior and medio-lateral axes
from Eqs. 5 and 6, respectively, as described below:

CoPap = −My

Fz
, [5]

CoPml = Mx

Fz
, [6]

where My is the medio-lateral moment, Mx is the antero-posterior moment,
and Fz is the GRF in the vertical axis.

The total displacement of the CoP (CoPTotalDisp) is calculated as the sum of
the resultant displacements of the CoP in the antero-posterior and medio-
lateral directions and was accessed through Eq. 7:

CoPTotalDisp = ∑n
i=1

(⃒⃒⃒ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CoP2

ap(i+1) + CoP2
ml(i+1)

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CoP2

ap(i) + CoP2
ml(i)

√ ⃒⃒⃒). [7]

The mean velocity of CoP excursion (CoPMeanVel) was calculated as the

Table 1. Results from ANN classification

Prefatigue Fatigue Postfatigue 20 min

Subject 01 0 1 1
Subject 02 0 1 0
Subject 03 0 0 0
Subject 04 0 1 0
Subject 05 0 1 0
Subject 06 0 0 0
Subject 07 0 1 0
Subject 08 0 0 0
Subject 09 0 1 1
Subject 10 0 1 0
Subject 11 0 1 0
Subject 12 0 1 1
Subject 13 0 1 0

19870 | www.pnas.org/cgi/doi/10.1073/pnas.2007579117 Goethel et al.
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resultant displacements of the CoP in the antero-posterior and medio-lateral
directions in function of time, obtained through Eq. 8.

CoPMeanVel =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝∑n
i=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(⃒⃒⃒ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

CoP2
ap(i+1) + CoP2

ml(i+1)

√
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
CoP2

ap(i) + CoP2
ml(i)

√ ⃒⃒⃒)
(1 ÷ fs)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ ÷ n, [8]

where fs is the acquisition frequency of the force platform (1,500 Hz).
The measure of CoP area consists of the area of the 95% prediction ellipse,

and the calculation was conduct according to Chew (46).
The parameters from the CoP excursion were calculated for both phases in

both tasks.

Articular torque distribution. To calculate the triaxial joint moment in the ankle
(ID Ankle x, y, and z), knee (ID Knee x, y, and z), and hip (ID Hip x, y, and z),
the inverse-dynamics approach was used. The Newton–Euler equations (Eqs.
9 and 14) described the behavior of a mathematical model as a link-segment
model (Fig. 5). Briefly, the joint moments x, y, and z means adduction/ab-
duction, extension/flexion, and rotation, respectively.

Through the Newton equation (Eq. 9), it is possible to determine the joint
reaction forces by calculating the sum of the horizontal forces in the antero-
posterior (Eq. 10), medial-lateral (Eq. 11), and vertical (Eq. 13) axes.

∑Fx|y = m ·ax|y , [9]

Rxp = m ·ax − Rxd ..., [10]

Ryp = m ·ay − Ryd ..., [11]

where P is proximal, d is distal joint, and ax|y is acceleration of segment
center of mass (CoM), in the antero-posterior or medial-lateral direction;
e.g., d is the force platform when p is the ankle.

∑Fz = m ·az, [12]

Rzp = m · az +m ·g − Rzd . [13]

By applying the Euler equation and using the inertial parameters, it is possible
to determine the joint moments by calculating the sum of moments as shown
in Eqs. 14–16.

∑M _x| _y| _z = Ix|y|z · αx|y|z, [14]

M _xp| _yp| _zp = Ix|y|z · αx|y|z −M _xd| _yd| _zd − Rxp|yp · rp · sin(θ) + Rzp · rp · cos(θ)
+ Rxd|yd · rd · sin(θ) − Rzd · rd · cos(θ), [15]

where rp is the distance from segment CoM to the proximal joint; and θ is the
angle of segment to the right-hand horizontal.

Using the motion coordinates, we obtain:

M _xp| _yp| _zp = Ix|y|z · αx|y|z −M _xd| _yd| _zd − Rxp|yp · (Zp − ZCoM) + Rzp · (x⃒⃒yCoM − x
⃒⃒
yp)

+ Rxd|yd · (ZCoM − Zd) − Rzd · (x⃒⃒yp − x
⃒⃒
yCoM)...,

[16]

where (xcom, ycom, zcom) are the coordinates of the center of mass of the
segment, (xp, yp, zp) are the coordinates of the proximal joint, and (xd, yd, zd)
are the coordinates of the distal joint.
ANN structure development and training. The structure of ANN used was the Self
Organizing Feature Maps (SOFMs) (47, 48), which simulate how cells in the
mammalian cerebral cortex organize themselves in a highly structured way,
resulting in regions of the brain specifically trained in the sensory processing
of signals such as vision, hearing, motor control, language, etc. (48), thus
organizing the information in a spatial manner.

The SOFM is a network structure for working with unsupervised learning
that learns to sort the input vectors according to how they are grouped in the
input space. They differ from the competitive layers in which neighboring
neurons in the self-organization map learn only to recognize the neigh-
boring sections of the input space, so they learn both the distribution and
the topology of the input vectors in which they are trained. This type of
structure has already been widely applied to biomechanical analysis (49–51).

The learning algorithm used was the Batch Weight/Bias Rules, where each
weight and bias is updated according to their learning function after each
epoch (a passage through the set of input vectors). A 2,000-epochs limit was
established for network training. The structure (Fig. 6) consisted of 61 variables
in the input space (15 variables from the unstable and 15 from the stable

Fig. 5. Graphical representation of the lower-limb link-segment model.

Fig. 6. Self-organizing feature maps structure. Input: 61 kinetic and kine-
matic variables. Output: “0,” no change, or “1,” change in the general
functional profile.
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phase of the squatting task; and 16 and 15 variables, respectively, from the
unstable and the stable phase of the drop-landing task) for each subject and in
three conditions, prefatigue, fatigue, and 20 min postfatigue, covering the
behavior of lower-limb kinematics, postural control, proprioception, joint-
torque distribution, and landing-involved capacities. The output space con-
sisted of a binary classification composed of “0” or “1,” indicating, respec-
tively, “no change” and “change” in the general functional profile.

Data Availability. The data are available on Figshare as a public dataset under
the CC BY 4.0 license (https://doi.org/10.6084/m9.figshare.12514289) (52).
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